

Technical Report

80459-SRL-RP-XT-001-PI

Project

The Laboratory Measurement of The Random Incidence Sound Absorption of Acoustic Panels

Prepared for

Pineapple Contracts

Ву

Kieron Farrow

Published

23 March 2022

Page 2 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Qual	lity Assurance
Project Title	The Laboratory Measurement of The Random Incidence Sound Absorption of Acoustic Panels
Document Title	Laboratory Test Report
Client	Pineapple Contracts
Client Address	Westmead Maidstone Kent ME20 6XJ
Author	Kieron Farrow
Checker	Allen Smalls
Report Number	80459-SRL-RP-XT-001-P1

Report Version History

Version	Date	Comments
PI	23/03/2022	

Kieron Farrow

Tester

For and on behalf of

SRL Technical Services Limited

Kieron Farrow

Tel: 01787 247595
Email: kfarrow@srltsl.com

Contents

Quality Manager

Allen Smalls

0444

Test Report No: 80459-SRL-RP-XT-001-PI

Page 3 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

1.0	Description of Test	4
2.0	Results	5
Data S	heets I to 3	6
Appen	dix A - Details of Measurements	9
Appen	dix B – Test Procedure I	I
Appen	dix C – Measurement Uncertainty I	3
Appen	dix D – Mounting MethodsI	6

Page 4 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

1.0 Description of Test

Tests have been done in SRL's Laboratory at Holbrook House, Sudbury, Suffolk, to determine the random incidence sound absorption of acoustic panels in accordance with BS EN ISO 354:2003 and the single number rating in accordance with BS EN ISO 11654:1997.

The results are given in 1/3rd octave bands over the frequency range 50Hz to 10kHz, which is beyond that required by the test standard. Measurements outside the standard frequency range are not UKAS accredited.

1.1 Description of Sample

One type of acoustic panel was tested. See Section 2.0 and Data Sheets I to 3 for more details.

Sampling plan: Enough for test only

Sample condition: New

Details supplied by: Pineapple Contracts

Sample installed by: Pineapple Contracts

1.2 Sample Delivery Date

15 March 2022

1.3 Test Procedures

The sample was mounted/located and tested in accordance with the relevant standard. The details of measurements are given in Appendix A. The method and procedure are described in Appendix B. The measurement uncertainty is given in Appendix C. The mounting methods are described in Appendix D.

Page 5 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

2.0 Results

The results of the measurements and subsequent analysis are given in Data Sheets I to 3 and summarised below.

Results relate only to the items as received and tested.

SRL Test No.	Description in Brief	Mounting Method	$\alpha_{\text{\tiny w}}$
I	Hush Cork Acoustic Panel 270x270x25mm	Α	0.15 (M)
2	Hush Cork Acoustic Panel 270x270x25mm (With Nominally 10mm Gap Between Products)	А	0.20
3	Hush Cork Acoustic Panel 270x270x25mm Laid On 12.5mm Plasterboard	А	0.20 (M)

Page 6 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Data Sheet I

Laboratory Measurement of Random Incidence Sound Absorption to BS EN ISO 354:2003

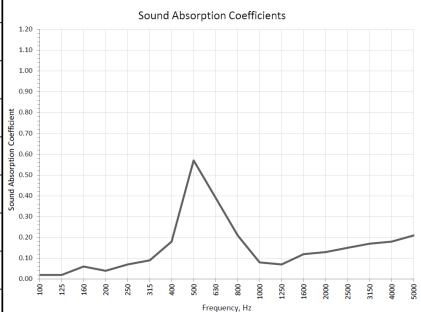
Test Number: Test Room: **E**mpty With Sample Client: Pineapple Contracts Air Temperature: 15.5 °C 15.4 °C 55 % RH 18/03/2022 Air Humidity: 55 % RH **Test Date:** Chamber Volume: 300.1 m³ Air Pressure: 1033 mbar 1034 mbar 12.32 m² Mounting Method: A Sample Area:

Sample Description: Hush Cork Acoustic Panel 270x270x25mm

	TI, empty room	T2, room reverberation	Sound	Practical Sound		
Frequency	reverberation	time with	Absorption	Absorption		
Hz	time	sample	Coefficient	Coefficient		
	sec	sec	α,	α_p		
<i>50</i> *	5.30	5.52	-0.03			
63*	4.82	4.65	0.03	n/a		
*08	6.42	6.69	-0.03			
100	6.42	6.25	0.02			
125	6.63	6.42	0.02	0.05		
160	6.32	5.75	0.06			
200	6.36	5.94	0.04			
250	6.59	5.94	0.07	0.05		
315	6.73	5.88	0.09			
400	6.41	4.96	0.18			
500	5.57	3.10	0.57	0.40		
630	4.92	3.31	0.39			
800	5.07	4.01	0.21			
1000	5.48	4.93	0.08	0.10		
1250	5.44	4.97	0.07			
1600	5.11	4.41	0.12			
2000	4.75	4.10	0.13	0.15		
2500	4.23	3.64	0.15			
3150	3.43	2.98	0.17			
4000	2.77	2.45	0.18	0.20		
5000	2.18	1.95	0.21			
6300*	1.52	1.37	0.27			
8000*	1.26	1.15	0.28	n/a		
10000*	0.86	0.81	0.25			

 α_{w} 0.15(M)

Class Not Classified


Calculated to BS EN ISO 11654:1997

NRC 0.20

Calculated to ASTM C 423-01

* Denotes frequencies outside the range covered by BS EN ISO 354:2003 and not UKAS accredited

vl

Page 7 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Data Sheet 2

Laboratory Measurement of Random Incidence Sound Absorption to BS EN ISO 354:2003

Test Number: Test Room: Empty With Sample 15.5 °C 15.4 °C Client: Pineapple Contracts Air Temperature: Test Date: 18/03/2022 Air Humidity: 55 % RH 54 % RH Chamber Volume: 300.1 m³ Air Pressure: 1033 mbar 1034 mbar Mounting Method: A 13.25 m²

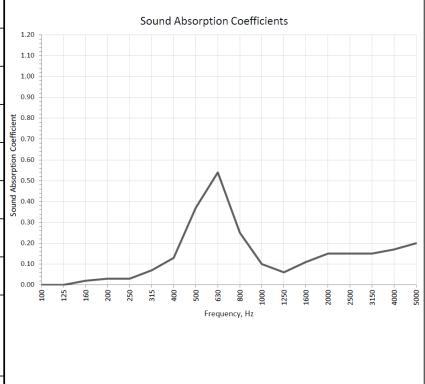
 Mounting Method:
 A
 Sample Area:
 13.25 m²

 Sample Description:
 Hush Cork Acoustic Panel 270x270x25mm (With Nominally 10mm Gap Between Products)

Frequency Hz	TI, empty room reverberation time	T2, room reverberation time with sample	Sound Absorption Coefficient	Practical Sound Absorption Coefficient		
	sec	sec	αs	α _p		
50*	5.30	5.04	0.04	,		
63*	4.82	4.85	0.00	n/a		
80*	6.42	6.76	-0.03			
100	6.42	6.47	0.00			
125	6.63	6.59	0.00	0.00		
160	6.32	6.07	0.02			
200	6.36	6.09	0.03			
250	6.59	6.23	0.03	0.05		
315	6.73	6.01	0.07			
400	6.41	5.23	0.13			
500	5.57	3.58	0.37	0.35		
630	4.92	2.86	0.54			
800	5.07	3.78	0.25			
1000	5.48	4.80	0.10	0.15		
1250	5.44	4.98	0.06			
1600	5.11	4.41	0.11			
2000	4.75	3.97	0.15	0.15		
2500	4.23	3.58	0.15			
3150	3.43	2.99	0.15			
4000	2.77	2.43	0.17	0.15		
5000	2.18	1.93	0.20			
6300*	1.52	1.37	0.23			
8000*	1.26	1.14	0.25	n/a		
10000*	0.86	0.79	0.29			

 α_{w} 0.20

Class Not Classified


Calculated to BS EN ISO 11654:1997

NRC 0.15

Calculated to ASTM C 423-01

* Denotes frequencies outside the range covered by BS EN ISO 354:2003 and not UKAS accredited

νl

Page 8 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Data Sheet 3

Laboratory Measurement of Random Incidence Sound Absorption to BS EN ISO 354:2003

Test Number: Test Room: Empty With Sample Client: Pineapple Contracts Air Temperature: 15.5 °C 15.4 °C 18/03/2022 55 % RH 53 % RH Test Date: Air Humidity: Chamber Volume: 300.1 m³ Air Pressure: 1033 mbar 1034 mbar Sample Area: 12.32 m² Mounting Method: A

Sample Description: Hush Cork Acoustic Panel 270x270x25mm Laid On 12.5mm Plasterboard

Frequency Hz	TI, empty room reverberation time sec	T2, room reverberation time with sample sec	Sound Absorption Coefficient α _s	Practical Sound Absorption Coefficient α_p
<i>50</i> *	5.30	5.13	0.02	
63*	4.82	4.80	0.00	n/a
<i>80</i> *	6.42	6.74	-0.03	
100	6.42	6.24	0.02	
125	6.63	6.43	0.02	0.05
160	6.32	5.73	0.06	
200	6.36	5.79	0.06	
250	6.59	5.64	0.10	0.10
315	6.73	5.04	0.20	
400	6.41	3.91	0.40	
500	5.57	3.07	0.58	0.45
630	4.92	3.45	0.34	
800	5.07	3.98	0.21	
1000	5.48	4.84	0.10	0.15
1250	5.44	4.83	0.09	
1600	5.11	4.23	0.16	
2000	4.75	3.96	0.16	0.15
2500	4.23	3.59	0.16	
3150	3.43	2 02	0.18	

 α 0.20(M)

0.18

0.23

0.23

0.22

0.25

0.20

n/a

Class Not Classified

2.41

1.89

1.36

1.14

0.79

4000

5000

6300*

*0008

10000*

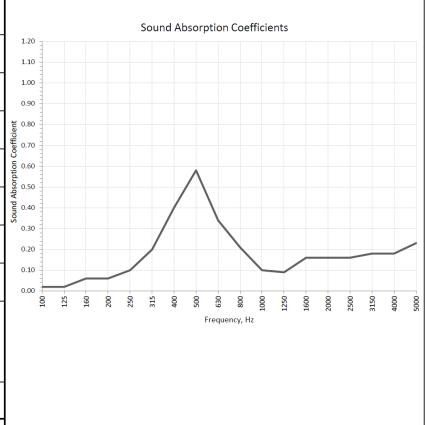
2.77

2.18

1.52

1.26

0.86


Calculated to BS EN ISO 11654:1997

NRC 0.25

Calculated to ASTM C 423-01

* Denotes frequencies outside the range covered by BS EN ISO 354:2003 and not UKAS accredited

vI

Page 9 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix A - Details of Measurements

A1.	Location

Sound Research Laboratories

Holbrook House

Little Waldingfield

Sudbury

Suffolk

COI0 0TF

A2. Test Date

18 March 2022

A3. Tester

Kieron Farrow of SRL Technical Services Limited

A4. Instrumentation and Apparatus Used

Make	Description	Туре
Abtronix	Microphone Multiplexer	
EDI	Microphone Power Supply Unit	
Norwegian Electronics	Multichannel Sound Level Meter	Nor850

Page 10 of 17 **Date:** 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Brüel & Kjaer	Windshields	UA0237
	Pre Amplifiers	2669C
	Microphone Calibrator	4231
	Omnipower Sound Source	4296
Larson Davis	12mm Condenser Microphone	2560, 377A60
Oregon Scientific	Temperature & Humidity & Probe	THGR810
TOA	Graphic Equalizer	E-1231
Crown	Class D Amplifier	XLS 1502
G.R.A.S	Pre Amplifier	26AK
	Microphone	40AR
References		
BS EN ISO 354:2003	Measurement of sound absorption in a reverbe	ration room.
BS EN ISO 11654:1997	Sound absorbers for use in buildings. Rating of	sound absorption.
ATSM C423-01	Sound Absorption and sound Absorption Coeff Reverberation Room	ficients by the

A5.

Page | | of | 7

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix B - Test Procedure

Measurements of Random Incidence Sound Absorption Coefficients to BS EN ISO 354:2003 - TP14 (Plane Absorbers)

In the laboratory, random incidence sound absorption coefficients are determined from the rate of decay of a sound field in a reverberation room, with and without a test sample installed. The rate of decay is described by the time a sound field takes to decay by 60dB, known as the reverberation time.

The reverberation room is constructed from 215mm brick, which is internally plastered with a reinforced concrete roof and floor. The reverberation room is rectangular, measuring 8.3 metres long, 6.7 metres wide and 5.4 metres high. The volume is $300 \, \text{m}^3$, the total surface area, $275 \, \text{m}^2$. From the ceiling hang 10 randomly positioned diffusers, with a total surface area (for one side) of $20 \, \text{m}^2$. The room is isolated from the surrounding structure using resilient mountings and seals, ensuring good acoustic isolation.

Using at least two omnidirectional loudspeaker positions, broad band random noise is produced in the room using an electronic generator and power amplifier. When the amplification system is switched off, the decay of sound is filtered into one-third octave band widths and the reverberation times measured. This process is repeated for each of six microphone positions and the values arithmetically averaged to obtain a final value for each frequency.

The sample, which has an area between 10m^2 and 15.7m^2 , is then laid on the floor of the reverberation room so that no part of it is closer than one metre from any edge of the boundaries. The procedure of measuring the reverberation times then repeated.

The sound absorption coefficients are calculated from the difference in decay rates for each frequency according to the formula:

$$\alpha_{s} = \frac{A_{T}}{S}$$

where

 α_s is the random incidence absorption coefficient

A_T is the increase in equivalent sound absorption area of the test specimen (m²)

S is the area covered by the test specimen (m²)

The equivalent absorption area of the test specimen is further defined as:

Page 12 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of

SRL Technical Services Limited

$$A_T = 55.3V \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1} \right) - 4V(m_2 - m_1)$$

where

V is the volume of the empty reverberation room (m³)

c₁ is the speed of sound in the empty room (m/sec)

T₁ is the reverberation time in the empty room (sec)

m₁ is the power attenuation coefficient calculated according to ISO 9613-1 using the climatic conditions that have been present in the empty room during the measurement.

 c_2 , T_2 and m_2 have the same meanings as c_1 , T_1 and m_1 but with the test specimen in the room.

It is occasionally found that the absorption coefficient derived in this manner reaches a value greater than unity. This is impossible, by definition, and investigation has shown that this anomaly is due to diffraction of the impinging sound waves at the edges of the sample. In practical terms this is insignificant.

Page 13 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix C - Measurement Uncertainty

This Appendix gives the measurement uncertainties for the various sound absorption test measurements. The measurement uncertainties have been calculated in accordance with BS EN ISO 12999-2:2020 and based on repeatability conditions with a coverage factor of k=2.

Weighted sound absorption coefficient, α_w, (according to BS EN ISO 11654)

Expanded measurement uncertainty ±0.07

1/3 octave band sound absorption coefficient measurements, α_s

Measured sound absorption coefficient, α_s																			
0.00 0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00

		Expanded uncertainties ±U (k=2)																			
f, Hz		De	erived	from I	BS EN	I ISO	12999		•				`	,	s and	a cov	erage	facto	r of k=	=2	
50*											n/a		.,				5 -				
63*	0.02	0.02 0.05 0.07 0.10 0.13 0.15 0.18 0.21 0.23 0.26 0.29 0.32 0.34 0.37 0.40 0.42 0.45 0.48 0.50 0.53 0.56																			
80*	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.33	0.35	0.37	0.39	0.41
100	0.02	0.03	0.05	0.06	0.08	0.09	0.10	0.12	0.13	0.15	0.16	0.18	0.19	0.21	0.22	0.23	0.25	0.26	0.28	0.29	0.31
125	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23
160	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.09	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.17	0.18	0.19
200	0.02	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.07	0.08	0.08	0.09	0.10	0.10	0.11	0.12	0.12	0.13	0.14	0.14	0.15
250	0.02	0.02	0.03	0.03	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.12	0.12	0.13
315	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.11
400	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.08	0.08	0.08	0.09	0.09
500	0.02	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.08
630	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.07
800	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07
1000	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07
1250	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.07
1600	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06
2000	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07	0.07
2500	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.07	0.07
3150	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07
4000	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08
5000	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10
6300*																					
8000*											n/a										
10000*																					

Page 14 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Practical sound absorption coefficient measurements, α_{p}

	Measured practical sound absorption coefficient, $lpha_{ m p}$																			
0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00

f, Hz		Der	ived fr	om B	S FN	ISO 1	12999		pande				,	,	ns an	d a cc	verag	e fact	or of k	γ=2	
63*				<u> </u>	<u> </u>						n/a		,				770.49	<u> </u>	<u> </u>	· <u>-</u>	
125	IV C																				
250	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.08	0.09	0.09
500	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1000	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
2000	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
4000	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
8000*											n/a										

Page 15 of 17 **Date:** 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Equivalent sound absorption area of the test specimen, A_T

Measured equivalent sound absorption area, A _T , m ²																				
0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0

	Expanded uncertainties ±U (k=2)																				
f, Hz		[Derive	d from	BS E	N ISO	1299		•				`	,	s and	a cove	erage t	factor	of k=2	<u>!</u>	
50*											n/a										
63*	0.2	0.5	0.7	1.0	1.3	1.5	1.8	2.1	2.3	2.6	2.9	3.2	3.4	3.7	4.0	4.2	4.5	4.8	5.0	5.3	5.6
80*	0.2	0.4	0.6	8.0	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.3	3.5	3.7	3.9	4.1
100	0.2	0.3	0.5	0.6	8.0	0.9	1.0	1.2	1.3	1.5	1.6	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.8	2.9	3.1
125	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3
160	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.9	1.0	1.1	1.2	1.3	1.4	1.4	1.5	1.6	1.7	1.8	1.9
200	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.8	0.8	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5
250	0.2	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.2	1.2	1.3
315	0.2	0.2	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	1.0	1.0	1.1
400	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.8	0.8	0.8	0.9	0.9
500	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8
630	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7
800	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7
1000	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7
1250	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.7
1600	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6
2000	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7
2500	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.7	0.7
3150	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7
4000	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8
5000	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0
6300*																					
8000*											n/a										
10000*																					

Page 16 of 17

Date: 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Appendix D – Mounting Methods

Description of Test Specimen Mountings for Sound Absorption Tests

BS EN ISO 354:2003 describes various test specimen mountings. The methods of mounting used for these tests is briefly described as follows:

Type A Mounting

Test specimen placed directly against a room surface. The specimen may be held in place with adhesive or mechanical fasteners providing there is no resulting air space between the specimen and room surface.

Page 17 of 17 **Date:** 23/03/2022

This report shall not be reproduced, except in full, without written approval of SRL Technical Services Limited

Laboratory

Holbrook House
The Street
Little Waldingfield
Sudbury
Suffolk
CO10 0TF
Tel: +44 (0)1787 247595

Website: www.srltsl.com e-mail: srl@srltsl.com

Registered Name and Address:

SRL Technical Services Limited Holbrook House Little Waldingfield Sudbury Suffolk CO10 0TF

Registered Number: 907694 England

